EXOLAUNCH

SPACE. LET US TAKE YOU THERE

Quadro User Manual

Microsatellite separation system Revision 2.0 | August 2024

Table of Contents

1. Quick Reference	4
2. Introduction	5
1.1 What is Quadro	6
1.2 Components and Features	7
1.3 Qualification Status	7
1.4 Deployment Sequence	9
3. System Description	10
2.1 Coordinate System	11
2.2 Mass Properties	12
2.3 Mounting Configurations	13
2.4 Mechanical Interfaces	13
2.5 Keep-Out Dimensions	13
2.6 Maximum Loads	14
2.7 Stiffness and FEM Modeling	14
2.8 Deployment Velocity	15
2.9 Tip-Off Rates	16
2.11 Electrical Properties	17
2.11.1 DSub-9 Connectors	17
2.11.2 Separation Signal	
2.11.3 Quadro Accessories	
2.11.4 Grounding	19
2.12 Thermal Properties	19
4. Installation and Operation	20
3.1 Installation	21
3.1.1 Preparation	21
3.1.2 Alignment	23
3.1.3 Installation	26
3.1.4 Functional Test and Reset	28
5. Mechanical Interfaces	
6.A.1. Quadro Arrow 150 Satellite Interface	
7.A.2. Quadro Arrow 150 Launch Vehicle Interface	

Version	Author	Date	Changes
1.0	СР	February 2, 2024	Initial release.
1.1	СР	June 26, 2024	Updated strength and stiffness values, thermal properties, S-adapter color. Removed additional Quadro configurations.
1.2	СР	June 28, 2024	Removed stiffness values, added Quadro FEM details
2.0	MF	08 August, 2024	Removed Bending Moment Limit. Value is still TBD. Updated SV-side interface drawing.

Quick Reference

Figure 1: Quadro Coordinate System.

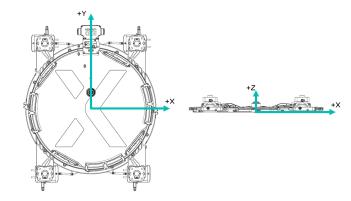


Table 1: Quadro Characteristics Overview.

Parameter			Arrow 150
Mounting	HDRM Spacing (X) [mm]		456
Pattern	HDRM Spacing (Y) [mm]		645
	HDRM Spacing (X) [in]		17.953
	HDRM Spacing (Y) [in]	2.4	25.394
	Number of Fasteners		16
	Fastener Type		M8
	Flatness Tolerance (mm)		0.1
Keep-Out	Inner keep-out diameter (mm)		500
Dimensions (mm)	Outer keep-out short edge (mm)	2.5	720
	Outer keep-out long edge (mm)		775
Mass (kg)	S-Adapter (kg)		1.58
	L-Adapter [kg]	2.2	6.82
	Combined Mass [kg]		8.40
Maximum	Axial [kN]		±75
Load per HDRM (N)	Lateral (Shear) [kN]	2.6	±20
	Bending (Nm)		TBD
Separation	Nominal Separation Signal	2.11	24VDC for 0.5s
	Average Separation Time [s]	2.11	0.1
Thermal	Lower Operating Limit		-34
(°C)	Upper Operating Limit	2.12	+71
	Lower Survival Limit	2.12	-55
	Upper Survival Limit		+130

Introduction

1.1 What is Quadro

Quadro follows in the footsteps of Exolaunch's CarboNIX line of microsat separation systems. It is a four-point satellite separation system suitable for satellites weighing up to 300 kg flying on Falcon 9 Rideshare plates. It has been designed for a very wide range of microsatellite buses, including Airbus Arrow 150.

> LOW MASS

Optimized for mass, Quadro offers the lowest flyaway mass of any four-point system.

> SHOCK-FREE DEPLOYMENT

No pyrotechnics ensures that even the most sensitive payloads remain intact after deployment.

> LOW TUMBLING

The patented CarboNIX pusher arm system has an average tip-off rate of 0.6 deg/s in all three axes.

> FAST RESET TIME

Simple but robust magnetic locks are easy to operate and quick to reset.

> FLIGHT HERITAGE

Critical subsystems like lock mechanism and pusher arms have flight heritage across dozens of missions.

> ITAR-FREE

Quadro is not subject to export restrictions of any kind.

Quadro is suitable for microsatellites between 150kg and 800kg, with this Arrow 150 configuration specifically designed to deploy spacecraft utilizing the Airbus Arrow 150 satellite bus. From the ground up, it has been designed to simplify every step of your satellite mission.

- > Fully mechanically actuated. No need for multiple synchronized deploy signals or signal multiplexers to actuate the four points.
- > Quickly and easily resettable, making it possible to perform integrated functional testing with your satellite in the launch configuration for maximum reliability.
- Minimal profile. Quadro only occupies four small points on the satellite base plate, the rest is reserved for your spacecraft systems and instruments.
- > Low cost, fast lead time, and no export restrictions.

1.2 Components and Features

The major elements of the Quadro Arrow 150 system are shown below.

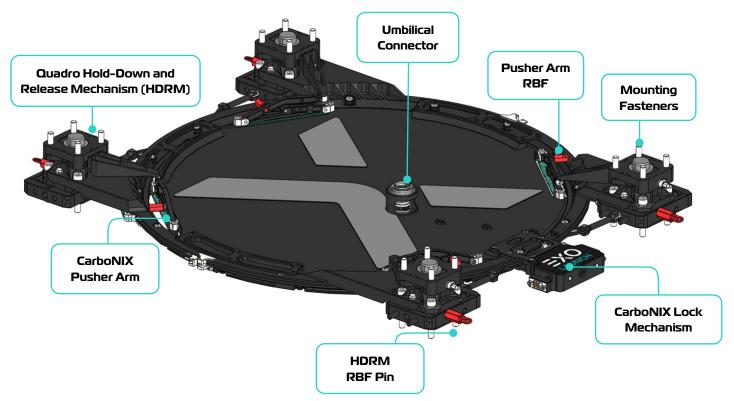


Figure 2: Quadro components overview.

1.3 Qualification Status

Quadro has been tested extensively following Exolaunch testing philosophy and requirements from various launch vehicle producers, primarily SpaceX. In every test, Quadro has demonstrated outstanding reliability and robustness. The Quadro has been demonstrated to be the stiffest four-point system for microsatellites on the market today.

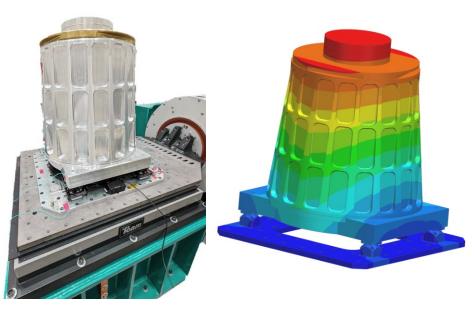


Figure 3: Quadro HDRM Vibration Qualification (left) and Correlation (right)

© 2024. All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein for purposes other than provided for by this document, is not permitted except with express written permission of EXOLAUNCH GmbH.

Exolaunch pushes the limits of testing with every Exolaunch separation system, and Quadro is no exception. The Quadro HDRMs have been tested and pushed to the breaking point so that we know exactly when, where and why our systems fail. This test methodology gives us an unmatched understanding of our systems for an unbeatable reliability.

Figure 4: Quadro HDRM Strength Qualification (left) and Shock Qualification (right)



Figure 5: Quadro system under test.

1.4 Deployment Sequence

- 1. The deploy command opens the redundant magnetic locks, and the inhibit pin is released.
- Now free to rotate, the synchronization ring drives the deploy arms, opening all four HDRM points simultaneously. The synchronized release is entirely mechanical, and a single deploy command is sufficient to open all four points.
- **3**. With the HDRMs open, the satellite is no longer held to the launch vehicle. The pusher arm system provides the separation velocity for a smooth, stable deployment.
- 4. Internal telemetry switches toggle when the synchronization ring has rotated and when the pusher arm system is fully extended. The launch vehicle reads these signals through the same DSub-9 connector used to provide the deploy command.

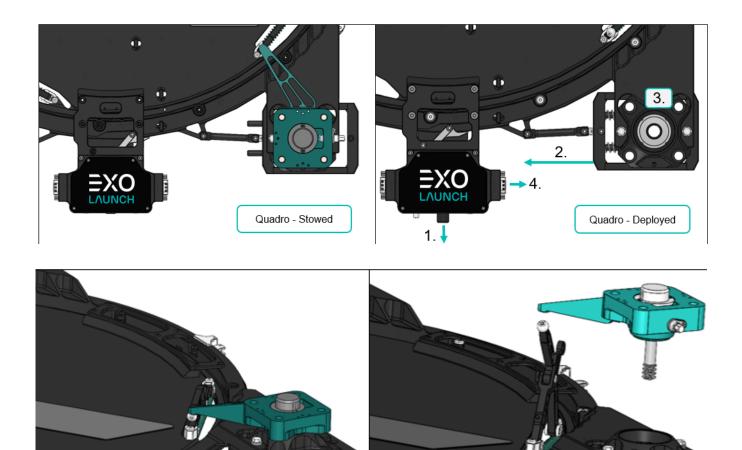


Figure 6: Quadro step-by-step deploy sequence.

Quadro - Deployed

Quadro - Stowed

System Description

2.1 Coordinate System

The Quadro coordinate system is defined in the same manner for all configurations. The image below illustrates the coordinate system for Quadro configurations both with and without the internal separation connector plate.

The Z-Axis is parallel to the deployment direction and concentric to the synchronization ring, with +Z pointing towards the satellite. The origin of the coordinate system is where the Z-Axis intersects the L-adapter mounting plane. The +Y direction points towards the lock mechanism and is aligned with the footprint of the four point interface. The X-Axis is defined by the right hand rule.

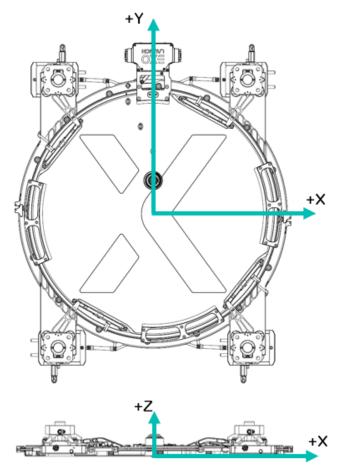


Figure 7: Quadro Coordinate System

2.2 Mass Properties

Mass properties are given here for the Arrow 150 configuration of Quadro, including the center plate and lower separation connector.

Configuration	Arrow 150		
S-Adapter Mass (all four points) [kg]			1.58
L-Adapter Mass (kg)			6.82
Combined Stowed Mass (kg)			8.40
		x	0.00
	Center of Gravity [mm]	Y	0.00
		z	58.38
		×	162380.63
S-Adapter	Moment of Inertia (kgmm ²)	Y	82297.73
		Z	244096.58
		YZ	0.00
	Product of Inertia (kgmm ²)	xz	0.00
		XY	-22.01
		X	0.73
	Center of Gravity (mm)	Y	20.78
		Z	17.02
		×	456733.19
L-Adapter Stowed	Moment of Inertia (kgmm ²)	Y	279391.66
		z	734508.88
	Deadurt of	YZ	-247.99
	Product of Inertia (kgmm²)	xz	8.29
		XY	-5323.11
		×	0.77
	Center of Gravity (mm)		20.82
		Z	18.18
	Mamont of	×	457853.14
L-Adapter Deployed	Moment of Inertia (kgmm²)	Y	279441.92
		Z	734837.94
	Product of	YZ	-413.35
	Inertia (kgmm²)	xz	2.20
		XY	-1782.43
	Center of Gravity	×	0.59
	(mm)	Y	16.86
		Z	24.82
Combined System	Moment of	×	621871.69
Stowed	Inertia (kgmm²)	Y	363892.17
		Z	979161.92
	Product of	YZ XZ	-1354.28
	Inertia (kgmm²)		-30.55
			-5325.61

Table 2: Quadro Arrow 150 Mass Properties

2.3 Mounting Configurations

Quadro can be mated with the launch vehicle and the satellite at each HDRM in the following way. **Note:** Fastener length is dependent on launch adapter and spacecraft hole definition.

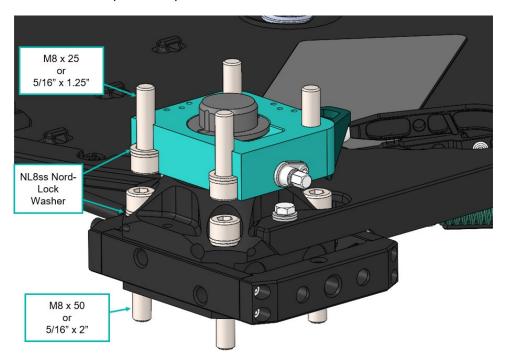


Figure 8: Quadro Mounting Configuration

2.4 Mechanical Interfaces

The mechanical interface definition is dependent on configuration. Detailed mechanical interface definitions can be found in Appendix A3.1.4A. Exolaunch requires customers to provide measurement reports of the satellite-side interface to verify adherence to the defined measurements, tolerances, and other Exolaunch interface requirements.

2.5 Keep-Out Dimensions

The spacecraft and launch vehicle must not interfere with the function of the Quadro mechanisms. In order to verify that Quadro does not intersect the spacecraft, launch vehicle, and ground operations, a dedicated review of these operations should be conducted with CAD files supplied by Exolaunch. Contact Exolaunch to receive CAD for fit check purposes.

2.6 Maximum Loads

The maximum payload mass capable of being launched by Quadro is determined by the launch vehicle loads and the satellite response to them. It is the customer's responsibility to verify that the loads experienced by the Quadro HDRMs does not exceed the maximum allowable.

Quadro Arrow 150 HDRM Maximum Loads				
Configuration Arrow 150				
Maximum Axial Force (kN)	±75			
Maximum Shear Force (kN) ±20				
Bending Moment (Nm)	TBD			

Table 3: Quadro Arrow 150 HDRM Maximum Loads

2.7 Stiffness and FEM Modeling

The Quadro dynamic behavior is exceptionally stiff. Stiffness has been measured using multiple methods, including direct measurement by measuring deformation under static load and dynamic correlation from vibration test results.

Exolaunch can provide a correlated FEM in .bdf format for use with NASTRAN solvers. Four HDRM FEMs should be mounted at the appropriate satellite interface using bolted connections. Contact Exolaunch to receive the Quadro FEM.

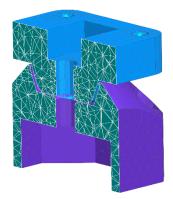
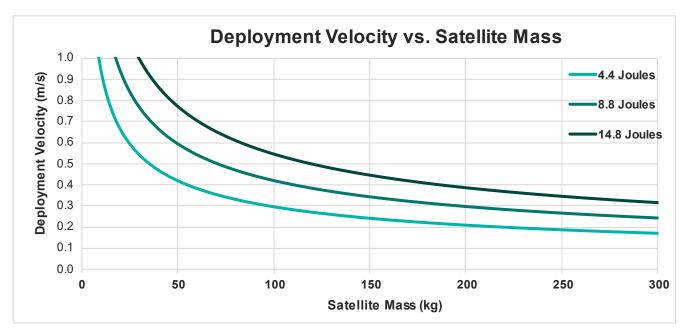



Figure 9: Quadro HDRM Finite Element Model

2.8 Deployment Velocity

Separation velocity depends on the spacecraft mass and the strength of the separation springs. The spring strength can be tailored to match a desired deployment velocity by mixing and matching from the available spring strengths. Using springs of different strengths has no effect on the tip-off rate. Figure 10 demonstrates the relationship between satellite mass and deployment speed relative to different values of the total spring energy.

The spring sets have a total energy tolerance of about 10%. Precise spring strengths will be measured in the course of the mission, increasing the precision to 2%. Table 4 shows the minimum and maximum values of the separation energy for each of the four springs. Mixing and matching springs is allowed. For separation velocity calculations, the equation for kinetic energy can be used.

$$KE = \frac{1}{2}mv^2$$

Table 4: Spring Set to Minimum and Maximum Energy

Configuration	Airbus Arrow 150
Number of springs	4
Spring 1 energy (brown) [J]	1.1
Spring 2 energy (black) [J]	2.2
Spring 3 energy (green) [J]	3.7

2.9 Tip-Off Rates

Quadro uses the same pusher-arm system for deployment as the popular Exolaunch CarboNIX microsatellite separation system. Due to the unique design of this system, all four pusher arms will extend at the same speed, regardless of the loads each individual arm faces. For this reason, the satellite will separate with near-zero initial rotation, independent of the satellite mass distribution.

Results from satellites deployed in space show an average rotation rate of 0.6 deg/s across all three axes. No axis rotation higher than 2 deg/s has been recorded from satellites deployed by CarboNIX.

				-				
No. Satellite		CG RSS Eccentricity	Spring	Deploy Velocity	CarboNIX Tip-Off Rate (deg/s)			
	Mass (kg)	(mm)	Energy (J)	[m/s]	×	Y	z	ABS MAX
1	110	5	4.4	0.28	-0.40	1.09	-0.54	1.09
2	110	5	15.5	0.53	0.13	0.34	0.04	0.34
З	110	5	9.4	0.41	0.25	0.40	1.90	1.9
4	99.7	11	15.5	0.56	0.28	-0.59	0.97	0.97
5	104.4	26.7	15.5	0.54	0.12	1.97	0.65	1.97
6	89.6	28	9.4	0.46	-0.60	-1.01	0.98	1.01
7	116.7	16.1	15.5	0.52	0.97	0.12	2.20	2.2
8	90.9	24.1	15.5	0.58	1.47	0.61	-0.77	1.47
9	91.7	36.1	9.4	0.45	-0.59	-0.41	-0.37	0.59
10	90.8	28	15.5	0.58	1.02	-0.83	0.51	1.02
11	89.9	35.7	15.5	0.59	0.27	0.03	0.79	0.79
12	108.8	15.7	15.5	0.53	0.05	1.39	1.34	1.39
13	110	5	4.4	0.28	0.50	0.50	0.90	0.9
14	89.6	28	10.4	0.48	-0.70	-0.49	0.80	0.8
15	105	26.7	15.5	0.54	0.02	1.80	2.22	2.22
16	91.4	34.3	15.5	0.58	1.45	0.25	-0.23	1.45
17	110	5	15.5	0.53	-0.29	-0.10	-0.26	0.29
18	110	5	9.4	0.41	-0.31	-0.28	-0.78	0.78
19	90.4	22.7	15.5	0.59	-0.80	-0.25	0.13	0.8
20	88.7	13.7	9.4	0.46	0.03	0.70	0.54	0.7
21	89.3	28	13.9	0.56	0.48	0.49	0.61	0.61
22	96.1	12.8	13.9	0.54	-0.80	0.59	1.89	1.89
23	21.9	6.6	4.4	0.63	1.38	0.73	1.21	1.38
						Max tip-of	f rate (deg/s)	2.22

Table 5: Examples of customer-reported tip-off rates for different satellites types.

2.11 Electrical Properties

2.11.1 DSub-9 Connectors

The Quadro locking mechanism has two male DSub-9 connectors (Harting 09674095615). Each connector is identical, and either one or both connectors can be used to trigger CarboNIX.

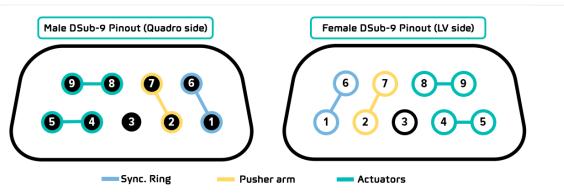

Table 6: Quadro Pinout

Figure 11:

Illustration of the Two DSub-9 Connectors

Pin	Designation	Function	Continuity Check Across Pins
1	Clamp Ring TM1	Closed after deployment	
2	Pusher Arm TM2	Closed after	deployment
З	-	-	
4	Actuator 2	Return	1.2V ± 10% drop across pins, using multimeter* in Diode
5	Actuator 2	VCC	mode.
6	Clamp Ring TM1	Closed after deployment	
7	Pusher Arm TM2	Closed after deployment	
8	Actuator 1	Return	1.2V ± 10% drop across pins, using multimeter* in Diode
9	Actuator 1	VCC	mode.

*Explosion-safe multimeter not required.

© 2024. All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein for purposes other than provided for by this document, is not permitted except with express written permission of EXOLAUNCH GmbH.

2.11.2 Separation Signal

CarboNIX uses two permanent electromagnets at the heart of the locking mechanism. Similar to a solenoid, these devices use a permanent magnet to hold CarboNIX locked in place, without power, until the separation signal is received.

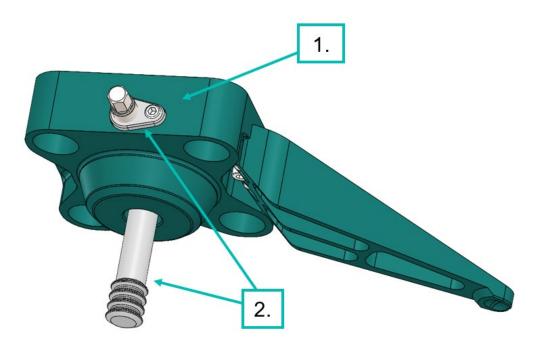
Table 7: Permanent Electromagnet Properties

Figure 12: Permanent Electromagnet

2.11.3 Quadro Accessories

Quadro uses the same accessories as CarboNIX. Switches are used by the satellite to detect deployment from the launch vehicle, while separation connectors enable the use of umbilical lines to the launch vehicle.

Table 8:	Quadro	Accessory	Mass
----------	--------	-----------	------


Separation Switch (incl. mounting bracket and plunger receptacle) [g]	20.0			
Upper Separation Connector (g)	11.4			
Lower Separation Connector (g)	14.6			

2.11.4 Grounding

CarboNIX provides an electrically conductive path from the satellite interface to the launch vehicle, eliminating the need for dedicated grounding straps. The satellite manufacturer is responsible for ensuring that the Quadro mounting fasteners are electrically connected to the rest of the satellite structure.

2.12 Thermal Properties

For thermal modeling exercises, the following measured thermal properties of the Quadro system can be used.

Figure 13:	Quadro	S-Adapter	Materials
	~~~~		

Table 9: Quadro S-Adapter	Thermal Properties
---------------------------	--------------------

No.	Color	Emissivity	Absorptivity
1	Green	0.85	0.58
2	Silver	0.11	0.42



# Installation and Operation

#### **3.1 Installation**

#### 3.1.1 Preparation

1.	<ul> <li>Initial condition:</li> <li>Quadro is stored in a low-energy state, with all springs in their relaxed position.</li> <li>Pusher arms are extended</li> <li>HDRMs are disengaged</li> <li>The lock mechanism is open</li> <li>All RBF elements are removed</li> </ul>	
2.	Inspect the system to ensure there is no damage or contamination.	
З.	Loosen the four mounting screws holding the Sep-Connector to the Quadro base ring.	Loosen
4.	Place the L-adapter on a stiff, flat, and clean surface capable of holding the weight of the spacecraft.	Quadro L-Adapter Table

5.	Stow the L-adapter pusher arms by slowly pressing them down simultaneously. Secure each pusher arm with one RBF pin.	
6.	Ensure that the smaller fixation screw (set screw) is loose. Then loosen the preload screws of the S- adapters (four screws total).	Loosen
7.	Loosen the three fixation screws holding each HDRM to the Quadro base ring (12 screws total).	Loosen
8.	Install one spring-loaded RBF pin to each HDRM.	

#### 3.1.2 Alignment

1.	Mount the four S-Adapters to the satellite base plate using M8x25 BUMAX 109 (10.9) screws and NL8ss washers torqued to 30 Nm. Cross pattern for each HDRM (16 screws total).	
2.	Lower the satellite onto the L-adapters. Pay attention to keep the central sep connector aligned.	Satellite Quadro Table
З.	Clamp the Quadro system until the HDRM RBF pins click into place.	

4.	<ol> <li>Engage the lock mechanism.</li> <li>1. Push the inhibit pin until it is fully depressed within the housing.</li> <li>2. Push the lock indicators closed.</li> </ol>	
5.	Fix each HDRM to the L-adapter by tightening the HDRM fixation screws to 2.5 Nm (8 screws total, only 2/3 are accessible for each HDRM).	2.5 Nm
6.	Lift the satellite plus Quadro L-adapter to access the separation connector fixation screws from underneath. Torque these screws to 3.5 Nm.	3.5 Nm
7.	Lower the satellite back onto the table.	Satellite Quadro Table

8.	Remove the HDRM RBF pins and release the lock mechanism.	EXC LAUNCH 0 0 0
9.	Lift the satellite.	Satellite Duadro Table
10.	Torque all 3 Fixation Screws at each HDRM to 4.5Nm (12 screws total).	4.5 Nm

#### 3.1.3 Installation

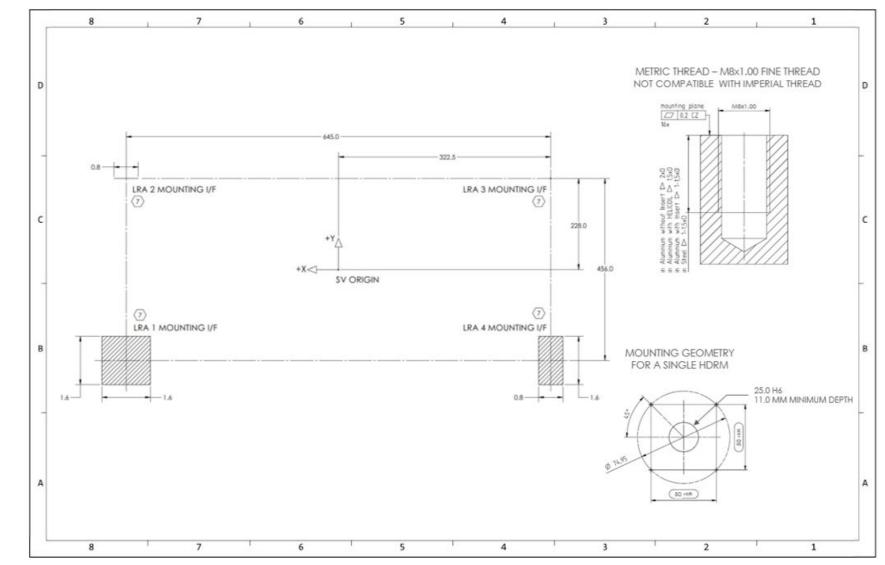
1.	Hold down all 4 pusher arms and remove the RBFs; Slowly release the pusher arms.	
2.	Mate the L-Adapter to the launch vehicle mounting interface with 4x M8x50 [length TBC] and NL8ss washers to 30Nm; Cross-pattern for each HDRM and between HDRM (16 screws total).	
З.	Install one spring-loaded RBF pin to each HDRM.	
4.	Clamp the Quadro system until the HDRM RBF pins click into place.	

© 2024. All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein for purposes other than provided for by this document, is not permitted except with express written permission of EXOLAUNCH GmbH.

5.	<ol> <li>Engage the lock mechanism.</li> <li>Push the inhibit pin until it is fully depressed within the housing.</li> <li>Push the lock indicators closed.</li> </ol>	
6.	<ol> <li>For each HDRM:</li> <li>Preload the system by torquing the preload screw to 10 Nm.</li> <li>Torque the locking screw to 2 Nm.</li> </ol>	1. 10 Nm 2. 2 Nm

#### 3.1.4 Functional Test and Reset

1.	Remove the spring loaded RBFs.	
2.	Release the lock mechanism. Verify that the HDRMs have fully opened, and that the TM1 LED on the handtrigger has toggled.	
З.	Lift the satellite. Verify that the pusher arms fully extend and that the TM2 LED on the handtrigger has toggled.	Satellite Quadro Launch Vehicle
4.	Lower the satellite back down onto the L-adapter.	Satellite Quadro Launch Vehicle

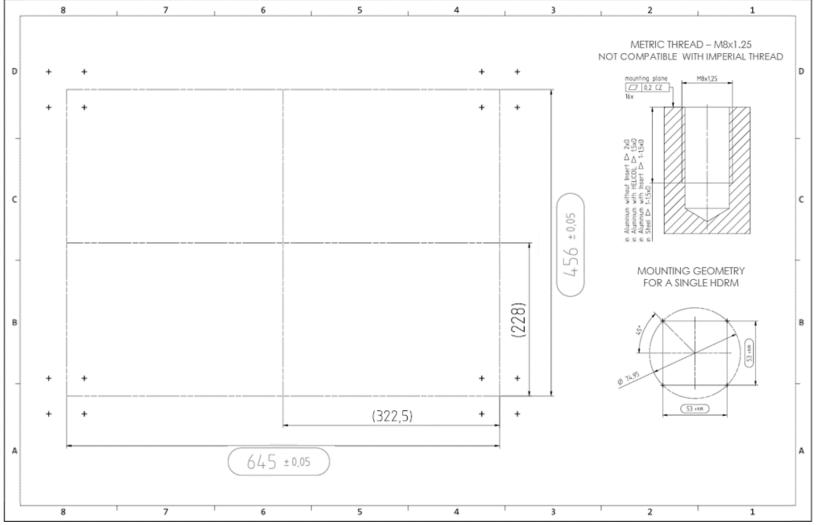

5.	Install one spring-loaded RBF pin to each HDRM.	
6.	Clamp the Quadro system until the HDRM RBF pins click into place.	
7.	Engage the lock mechanism. 3. Push the inhibit pin until it is fully depressed within the housing. Push the lock indicators closed.	
8.	Remove all RBF elements.	
9.	Quadro is now ready for flight.	



# Appendix

# **Mechanical Interfaces**

August 2024




### A.1. Quadro Arrow 150 Satellite Interface



#### August 2024

### A.2. Quadro Arrow 150 Launch Vehicle Interface





© 2024. All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein for purposes other than provided for by this document, is not permitted except with express written permission of EXOLAUNCH GmbH.

# EXOLAUNCH

SPACE. LET US TAKE YOU THERE



© 2024. All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any information contained therein for purposes other than provided for by this document, is not permitted except with express written permission of EXOLAUNCH GmbH.

